Publication news

Experimental study on wheel-soil interaction mechanics using in-wheel sensor and particle image velocimetry Part I: Analysis and modeling of normal stress of lightweight wheeled vehicles

Hiroki Tsubaki, Genya Ishigami

Journal of Terramechanics, Volume 93, 2021, Pages 23-39, ISSN 0022-4898

https://doi.org/10.1016/j.jterra.2020.11.003.(http://www.sciencedirect.com/science/article/pii/S0022489820300987)

Abstract: This study aims to develop a wheel-soil interaction model for a lightweight wheeled vehicle by measuring the normal stress distribution beneath the wheel. The main contribution of this work is to clarify the wheel-soil interaction using a wheel testbed that equips multiple sensory systems. An in-wheel sensor accurately measures the normal stress distribution as well as the contact angles of the wheel. Particle image velocimetry with a standard off-the-shelf camera analyzes soil flow beneath the wheel. The proposed model for the normal stress distribution is formulated based on these experimental data and takes into account the following phenomena for the lightweight vehicles that have not been considered in the classical model: (1) the normal stress distribution takes the form of a Gaussian curve; (2) the normal stress distribution concentrates in the front region of the wheel contact patch; (3) the distribution is divided into two areas with the boundary determined by the maximum normal stress angle; and (4) the maximum normal stress exponentially decreases as the slip ratio increases. Then, the proposed model is experimentally validated. Furthermore, a simulation study for the wheel driving characteristics using the proposed model confirms the accuracy of the proposed model.

Keywords: Wheel-soil interaction model; In-wheel sensor; Normal stress distribution; PIV; Lightweight vehicle