Publication news

A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 2. A research on the motion resistance of road wheels

Jakub Chołodowski, Piotr A. Dudziński

Journal of Terramechanics, Volume 96, 2021, Pages 101-115, ISSN 0022-4898

https://doi.org/10.1016/j.jterra.2021.02.005.(https://www.sciencedirect.com/science/article/pii/S0022489821000185)

Abstract: In spite of an increasing number of rubber-tracked crawlers, the literature provides few guidelines and calculation models suitable for minimizing their internal motion resistance. This article presents a model where the internal resistance of double-flanged road wheels for rubber-tracked vehicles is calculated as a sum of the losses resulting from the indentation of the wheels into the track surface and friction of the wheels against the track guide lugs. The model allows for vertical and lateral load of the wheels, the non-uniform distribution of the wheel pressure on the track, and the relationship between the friction coefficient and normal reaction force in the interface between the wheel and track guide lugs. The model has been verified by experiments. According to the results of model computations and experiments discussed in the article, the internal losses of a given rubber-tracked undercarriage might be reduced if: the road wheels are covered with a material that exhibits low friction coefficient and mechanical hysteresis, the vehicle suspension system features oscillating bogie wheels, the undercarriage is fitted with the largest possible number of road wheels, and the vehicle weight is evenly distributed to all of the road wheels.

Keywords: Tracked undercarriage; Rubber track; Internal motion resistance; Road wheels; Rubber friction; Rubber hysteresis; Indentation losses